Carrageenans and Their Oligosaccharides from Red Seaweeds Ahnfeltiopsis flabelliformis and Mastocarpus pacificus (Phyllophoraceae) and Their Antiproliferative Activity

Int J Mol Sci. 2023 Apr 21;24(8):7657. doi: 10.3390/ijms24087657.

Abstract

Comparative structural analysis of gelling polysaccharides from A. flabelliformis and M. pacificus belonging to Phyllophoraceae and the effect of their structural features and molecular weight on human colon cancer cell lines (HT-29, DLD-1, HCT-116) was carried out. According to chemical analysis, IR and NMR spectroscopies, M. pacificus produces kappa/iota-carrageenan with a predominance of kappa units and minor amounts of mu and/or nu units, while the polysaccharide from A. flabelliformis is iota/kappa-carrageenan (predominance of iota units) and contains negligible amounts of beta- and nu-carrageenans. Iota/kappa- (Afg-OS) and kappa/iota-oligosaccharides (Mp-OS) were obtained from the original polysaccharides through mild acid hydrolysis. The content of more sulfated iota units in Afg-OS (iota/kappa 7:1) was higher than in Mp-OS (1.0:1.8). The poly- and oligosaccharides up to 1 mg/mL did not show a cytotoxic effect on all tested cell lines. Polysaccharides showed an antiproliferative effect only at 1 mg/mL. Oligosaccharides had a more pronounced effect on HT-29 and HCT-116 cells than the original polymers, while HCT-116 cells were slightly more sensitive to their action. Kappa/iota-oligosaccharides exhibit a greater antiproliferative effect and more strongly decrease the number of colonies forming in HCT-116 cells. At the same time, iota/kappa-oligosaccharides inhibit cell migration more strongly. Kappa/iota-oligosaccharides induce apoptosis in the SubG0 and G2/M phases, while iota/kappa-oligosaccharides in the SubG0 phase.

Keywords: NMR spectroscopy; Phyllophoraceae; anticancer activity; carrageenan; mild acid hydrolysis; oligosaccharides; structure.

MeSH terms

  • Carrageenan / chemistry
  • Carrageenan / pharmacology
  • Humans
  • Oligosaccharides / metabolism
  • Oligosaccharides / pharmacology
  • Polysaccharides / metabolism
  • Polysaccharides / pharmacology
  • Rhodophyta* / chemistry
  • Seaweed* / chemistry

Substances

  • Carrageenan
  • Polysaccharides
  • Oligosaccharides