Structure-Based Design and Pharmacophore-Based Virtual Screening of Combinatorial Library of Triclosan Analogues Active against Enoyl-Acyl Carrier Protein Reductase of Plasmodium falciparum with Favourable ADME Profiles

Int J Mol Sci. 2023 Apr 7;24(8):6916. doi: 10.3390/ijms24086916.

Abstract

Cost-effective therapy of neglected and tropical diseases such as malaria requires everlasting drug discovery efforts due to the rapidly emerging drug resistance of the plasmodium parasite. We have carried out computational design of new inhibitors of the enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum (PfENR) using computer-aided combinatorial and pharmacophore-based molecular design. The Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) complexation QSAR model was developed for triclosan-based inhibitors (TCL) and a significant correlation was established between the calculated relative Gibbs free energies of complex formation (∆∆Gcom) between PfENR and TCL and the observed inhibitory potencies of the enzyme (IC50exp) for a training set of 20 known TCL analogues. Validation of the predictive power of the MM-PBSA QSAR model was carried out with the generation of 3D QSAR pharmacophore (PH4). We obtained a reasonable correlation between the relative Gibbs free energy of complex formation ∆∆Gcom and IC50exp values, which explained approximately 95% of the PfENR inhibition data: pIC50exp=-0.0544×∆∆Gcom+6.9336,R2=0.95. A similar agreement was established for the PH4 pharmacophore model of the PfENR inhibition (pIC50exp=0.9754×pIC50pre+0.1596, R2=0.98). Analysis of enzyme-inhibitor binding site interactions suggested suitable building blocks to be used in a virtual combinatorial library of 33,480 TCL analogues. Structural information derived from the complexation model and the PH4 pharmacophore guided us through in silico screening of the virtual combinatorial library of TCL analogues to finally identify potential new TCL inhibitors effective at low nanomolar concentrations. Virtual screening of the library by PfENR-PH4 led to a predicted IC50pre value for the best inhibitor candidate as low as 1.9 nM. Finally, the stability of PfENR-TCLx complexes and the flexibility of the active conformation of the inhibitor for selected top-ranking TCL analogues were checked with the help of molecular dynamics. This computational study resulted in a set of proposed new potent inhibitors with predicted antimalarial effects and favourable pharmacokinetic profiles that act on a novel pharmacological target, PfENR.

Keywords: ADME-related properties; PfENR; QSAR; in silico screening; malaria; molecular dynamics; molecular modelling; pharmacophore; triclosan; virtual combinatorial library.

MeSH terms

  • Acyl Carrier Protein
  • Antimalarials* / chemistry
  • Antimalarials* / pharmacology
  • Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) / chemistry
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Pharmacophore
  • Plasmodium falciparum
  • Quantitative Structure-Activity Relationship
  • Triclosan* / chemistry
  • Triclosan* / pharmacology

Substances

  • Triclosan
  • Acyl Carrier Protein
  • Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)
  • Antimalarials