Switchable moiré potentials in ferroelectric WTe2/WSe2 superlattices

Nat Nanotechnol. 2023 Aug;18(8):861-866. doi: 10.1038/s41565-023-01376-5. Epub 2023 Apr 27.

Abstract

Moiré materials with superlattice periodicity many times the atomic length scale have shown strong electronic correlations and band topology with unprecedented tunability. Non-volatile control of the moiré potentials could allow on-demand switching of superlattice effects but has remained challenging to achieve. Here we demonstrate the switching of the correlated and moiré band insulating states, and the associated nonlinear anomalous Hall effect, by the ferroelectric effect. This is achieved in a ferroelectric WTe2 bilayer of the Td structure with a centred-rectangular moiré superlattice induced by interfacing with a WSe2 monolayer of the H structure. The results can be understood in terms of polarization-dependent charge transfer between two WTe2 monolayers, in which the interfacial layer has a much stronger moiré potential depth; ferroelectric switching thus turns on and off the moiré insulating states. Our study demonstrates the potential for creating new functional moiré materials by incorporating intrinsic symmetry-breaking orders.