Synthesis and Biological Activity Evaluations of Green ZnO-Decorated Acid-Activated Bentonite-Mediated Curcumin Extract (ZnO@CU/BE) as Antioxidant and Antidiabetic Agents

J Funct Biomater. 2023 Apr 4;14(4):198. doi: 10.3390/jfb14040198.

Abstract

Green ZnO-decorated acid-activated bentonite-mediated curcumin extract (ZnO@CU/BE) was prepared as a multifunctional antioxidant and antidiabetic agent based on the extract of curcumin, which was used as a reducing and capping reagent. ZnO@CU/BE showed notably enhanced antioxidant properties against nitric oxide (88.6 ± 1.58%), 1,1-diphenyl-2-picrylhydrazil (90.2 ± 1.76%), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (87.3 ± 1.61%), and superoxide (39.5 ± 1.12%) radicals. These percentages are higher than the reported values of ascorbic acid as a standard and the integrated components of the structure (CU, BE/CU, and ZnO). This signifies the impact of the bentonite substrate on enhancing the solubility, stability, dispersion, and release rate of the intercalated curcumin-based phytochemicals, in addition to enhancing the exposure interface of ZnO nanoparticles. Therefore, effective antidiabetic properties were observed, with significant inhibition effects on porcine pancreatic α-amylase (76.8 ± 1.87%), murine pancreatic α-amylase (56.5 ± 1.67%), pancreatic α-glucosidase (96.5 ± 1.07%), murine intestinal α-glucosidase (92.5 ± 1.10%), and amyloglucosidase (93.7 ± 1.55%) enzymes. These values are higher than those determined using commercial miglitol and are close to the values measured using acarbose. Hence, the structure can be applied as an antioxidant and antidiabetic agent.

Keywords: ZnO; antidiabetes; antioxidant; bentonite; composite; curcumin.

Grants and funding

This research was funded by Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) grant number [RP-21-09-89].