Topological materials for full-vector elastic waves

Natl Sci Rev. 2022 Sep 24;10(5):nwac203. doi: 10.1093/nsr/nwac203. eCollection 2023 May.

Abstract

Elastic wave manipulation is important in a wide variety of applications, including information processing in small elastic devices and noise control in large solid structures. The recent emergence of topological materials has opened new avenues for modulating elastic waves in solids. However, because of the full-vector feature and the complicated couplings of the longitudinal and transverse components of elastic waves, manipulating elastic waves is generally difficult compared with manipulating acoustic waves (scalar waves) and electromagnetic waves (vectorial waves but transverse only). To date, topological materials, including insulators and semimetals, have been used for acoustic and electromagnetic waves. Although topological materials with elastic waves have also been reported, the observed topological edge modes lie on the domain wall. A natural question arises: Is there an elastic metamaterial with topological edge modes on its own boundary? Here, we report a 3D metal-printed bilayer metamaterial that topologically insulates elastic waves. By introducing chiral interlayer couplings, the spin-orbit couplings for elastic waves are induced, which give rise to nontrivial topological properties. Helical edge states with vortex features were demonstrated on the boundary of the single topological phase. We further show a heterostructure of the metamaterial that exhibits tunable edge transport. Our findings could be used in devices based on elastic waves in solids.

Keywords: edge states; elastic waves; topological insulators.