Structural basis of BAM-mediated outer membrane β-barrel protein assembly

Nature. 2023 May;617(7959):185-193. doi: 10.1038/s41586-023-05988-8. Epub 2023 Apr 26.

Abstract

The outer membrane structure is common in Gram-negative bacteria, mitochondria and chloroplasts, and contains outer membrane β-barrel proteins (OMPs) that are essential interchange portals of materials1-3. All known OMPs share the antiparallel β-strand topology4, implicating a common evolutionary origin and conserved folding mechanism. Models have been proposed for bacterial β-barrel assembly machinery (BAM) to initiate OMP folding5,6; however, mechanisms by which BAM proceeds to complete OMP assembly remain unclear. Here we report intermediate structures of BAM assembling an OMP substrate, EspP, demonstrating sequential conformational dynamics of BAM during the late stages of OMP assembly, which is further supported by molecular dynamics simulations. Mutagenic in vitro and in vivo assembly assays reveal functional residues of BamA and EspP for barrel hybridization, closure and release. Our work provides novel insights into the common mechanism of OMP assembly.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Outer Membrane Proteins* / chemistry
  • Bacterial Outer Membrane Proteins* / metabolism
  • Escherichia coli Proteins* / chemistry
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / chemistry
  • Escherichia coli* / metabolism
  • Molecular Dynamics Simulation
  • Protein Folding
  • Substrate Specificity

Substances

  • Bacterial Outer Membrane Proteins
  • BamA protein, E coli
  • Escherichia coli Proteins
  • EspP protein, E coli