Mitochondria-Targeted Nanosystem Enhances Radio-Radiodynamic-Chemodynamic Therapy on Triple Negative Breast Cancer

ACS Appl Mater Interfaces. 2023 May 10;15(18):21941-21952. doi: 10.1021/acsami.3c02361. Epub 2023 Apr 26.

Abstract

Radiodynamic therapy (RDT), which produces 1O2 and other reactive oxygen species (ROS) in response to X-rays, can be used in conjunction with radiation therapy (RT) to drastically lower X-ray dosage and reduce radio resistance associated with conventional radiation treatment. However, radiation-radiodynamic therapy (RT-RDT) is still impotent in a hypoxic environment in solid tumors due to its oxygen-dependent nature. Chemodynamic therapy (CDT) can generate reactive oxygen species and O2 by decomposing H2O2 in hypoxic cells and thus potentiate RT-RDT to achieve synergy. Herein, we developed a multifunctional nanosystem, AuCu-Ce6-TPP (ACCT), for RT-RDT-CDT. Ce6 photosensitizers were conjugated to AuCu nanoparticles via Au-S bonds to realize radiodynamic sensitization. Cu can be oxidized by H2O2 and catalyze the degradation of H2O2 to generate OH through the Fenton-like reaction to realize CDT. Meanwhile, the degradation byproduct oxygen can alleviate hypoxia while Au can consume glutathione to increase the oxidative stress. We then attached mercaptoethyl-triphenylphosphonium (TPP-SH) to the nanosystem, targeting ACCT to mitochondria (colocalization Pearson coefficient 0.98) to directly disrupt mitochondrial membranes and more efficiently induce apoptosis. We confirmed that ACCT efficiently generates 1O2 and OH upon X-ray irradiation, resulting in strong anticancer efficacy in both normoxic and hypoxic 4T1 cells. The down-regulation of hypoxia-inducible factor 1α expression and reduction of intracellular H2O2 concentrations suggested that ACCT could significantly alleviate hypoxia in 4T1 cells. ACCT-enhanced RT-RDT-CDT can successfully shrink or remove tumors in radioresistant 4T1 tumor-bearing mice upon 4 Gy of X-ray irradiation. Our work thus presents a new strategy to treat radioresistant hypoxic tumors.

Keywords: glutathione depletion; hypoxia; mitochondria-targeted nanosystem; radio-radiodynamic-chemodynamic therapy; triple negative breast cancer.

MeSH terms

  • Animals
  • Humans
  • Hydrogen Peroxide / pharmacology
  • Hypoxia
  • Mice
  • Mitochondria
  • Oxygen
  • Reactive Oxygen Species
  • Triple Negative Breast Neoplasms* / drug therapy

Substances

  • Reactive Oxygen Species
  • Hydrogen Peroxide
  • Oxygen