Integrating sustainability into production scheduling in hybrid flow-shop environments

Environ Sci Pollut Res Int. 2023 Apr 24. doi: 10.1007/s11356-023-26986-3. Online ahead of print.

Abstract

Global energy consumption is projected to grow by nearly 50% as of 2018, reaching a peak of 910.7 quadrillion BTU in 2050. The industrial sector accounts for the largest share of the energy consumed, making energy awareness on the shop floors imperative for promoting industrial sustainable development. Considering a growing awareness of the importance of sustainability, production planning and control require the incorporation of time-of-use electricity pricing models into scheduling problems for well-informed energy-saving decisions. Besides, modern manufacturing emphasizes the role of human factors in production processes. This study proposes a new approach for optimizing the hybrid flow-shop scheduling problems (HFSP) considering time-of-use electricity pricing, workers' flexibility, and sequence-dependent setup time (SDST). Novelties of this study are twofold: to extend a new mathematical formulation and to develop an improved multi-objective optimization algorithm. Extensive numerical experiments are conducted to evaluate the performance of the developed solution method, the adjusted multi-objective genetic algorithm (AMOGA), comparing it with the state-of-the-art, i.e., strength Pareto evolutionary algorithm (SPEA2), and Pareto envelop-based selection algorithm (PESA2). It is shown that AMOGA performs better than the benchmarks considering the mean ideal distance, inverted generational distance, diversification, and quality metrics, providing more versatile and better solutions for production and energy efficiency.

Keywords: Energy consumption; Multi-objective optimization; Production management; Time-of-use electricity rates; Workers’ flexibility.