Advanced Fourier migration for Plane-Wave vector flow imaging

Ultrasonics. 2023 Jul:132:107001. doi: 10.1016/j.ultras.2023.107001. Epub 2023 Apr 5.

Abstract

Ultrafast ultrasound imaging modalities have been studied extensively in the ultrasound community. It breaks the compromise between the frame rate and the region of interest by imaging the whole medium with wide unfocused waves. Continuously available data allow monitoring fast transient dynamics at hundreds to thousands of frames per second. This feature enables a more accurate and robust velocity estimation in vector flow imaging (VFI). On the other hand, the huge amount of data and real-time processing demands are still challenging in VFI. A solution is to provide a more efficient beamforming approach with smaller computation complexity than the conventional time-domain beamformer like delay-and-sum (DAS). Fourier-domain beamformers are shown to be more computationally efficient and can provide equally good image quality as DAS. However, previous studies generally focus on B-mode imaging. In this study, we propose a new framework for VFI which is based on two advanced Fourier migration methods, namely, slant stack migration (SSM) and ultrasound Fourier slice beamform (UFSB). By carefully modifying the beamforming parameters, we successfully apply the cross-beam technique within the Fourier beamformers. The proposed Fourier-based VFI is validated in simulation studies, in vitro, and in vivo experiments. The velocity estimation is evaluated via bias and standard deviation and the results are compared with conventional time-domain VFI using the DAS beamformer. In the simulation, the bias is 6.4%, -6.2%, and 5.7%, and the standard deviation is 4.3%, 2.4%, and 3.9% for DAS, UFSB, and SSM, respectively. In vitro studies reveal a bias of 4.5%, -5.3%, and 4.3% and a standard deviation of 3.5%, 1.3%, and 1.6% from DAS, UFSB, and SSM, respectively. The in vivo imaging of the basilic vein and femoral bifurcation also generate similar results using all three methods. With the proposed Fourier beamformers, the computation time can be shortened by up to 9 times and 14 times using UFSB and SSM.

Keywords: Fourier beamformation; Plane wave imaging; Ultrafast ultrasound imaging; Vector flow imaging; cross-beam Doppler.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Image Processing, Computer-Assisted* / methods
  • Phantoms, Imaging
  • Ultrasonography / methods