Acid-tolerant bacteria and prospects in industrial and environmental applications

Appl Microbiol Biotechnol. 2023 Jun;107(11):3355-3374. doi: 10.1007/s00253-023-12529-w. Epub 2023 Apr 24.

Abstract

Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.

Keywords: Acid tolerance mechanisms; Acid-tolerant bacteria; Biofilm formation; Bioremediation; Urease system.

Publication types

  • Review

MeSH terms

  • Acids / metabolism
  • Bacterial Proteins / genetics
  • Carboxy-Lyases* / genetics
  • Carboxy-Lyases* / metabolism
  • Escherichia coli / genetics
  • Escherichia coli Proteins* / genetics
  • Hydrogen-Ion Concentration
  • Streptococcus mutans / metabolism

Substances

  • Bacterial Proteins
  • Escherichia coli Proteins
  • Acids
  • Carboxy-Lyases