Comparative gonad transcriptome analysis in cobia (Rachycentron canadum)

Front Genet. 2023 Apr 6:14:1128943. doi: 10.3389/fgene.2023.1128943. eCollection 2023.

Abstract

Background: Cobia (Rachycentron canadum) is a species of fish with high commercial potential particularly due to fast growth rates. The evidence of sexual size dimorphism favoring females indicate potential benefits in having a monosex culture. However, the involvement of genetic factors responsible for sexual development and gonadal maintenance that produces phenotypic sex in cobia is largely unknown. Methods: In the present study, we performed transcriptome sequencing of cobia to identify sex-biased significantly differentially expressed genes (DEGs) in testes and ovaries. The reliability of the gonad transcriptome data was validated by qPCR analysis of eight selected significantly differential expressed sex-related candidate genes. Results: This comparative gonad transcriptomic analysis revealed that 7,120 and 4,628 DEGs are up-regulated in testes or ovaries, respectively. Further functional annotation analyses identified 76 important candidate genes involved in sex determination cascades or sex differentiation, including 42 known testis-biased DEGs (dmrt1, amh and sox9 etc.), and 34 known ovary-biased DEGs (foxl2, sox3 and cyp19a etc.). Moreover, eleven significantly enriched pathways functionally related to sex determination and sex differentiation were identified, including Wnt signaling pathway, oocyte meiosis, the TGF-beta signaling pathway and MAPK signaling pathway. Conclusion: This work represents the first comparative gonad transcriptome study in cobia. The putative sex-associated DEGs and pathways provide an important molecular basis for further investigation of cobia's sex determination, gonadal development as well as potential control breeding of monosex female populations for a possible aquaculture setting.

Keywords: Rachycentron canadum; cobia; gonad transcriptome; reproductive related pathways; sex-biased genes; sexual size dimorphism.

Grants and funding

This work was funded by the Cobia Genome Consortium established between Open Blue Sea Farms Panama S.A. (OBSF), Singapore campus of James Cook University (JCUS) and University of Chile (UoC).