Hyperexcitability in the olfactory bulb and impaired fine odor discrimination in the Fmr1 KO mouse model of fragile X syndrome

bioRxiv [Preprint]. 2023 Apr 10:2023.04.10.536251. doi: 10.1101/2023.04.10.536251.

Abstract

Fragile X syndrome (FXS) is the single most common monogenetic cause of autism spectrum disorders in humans. FXS is caused by loss of expression of the Fragile X mental retardation protein (FMRP), an mRNA-binding protein encoded on the X chromosome involved in suppressing protein translation. Sensory processing deficits have been a major focus of studies of FXS in both humans and rodent models of FXS, but olfactory deficits remain poorly understood. Here we conducted experiments in wild-type and Fmr1 KO ( Fmr1 -/y ) mice (males) that lack expression of the gene encoding FMRP to assess olfactory circuit and behavioral abnormalities. In patch-clamp recordings conducted in slices of the olfactory bulb, output mitral cells (MCs) in Fmr1 KO mice displayed greatly enhanced excitation, as evidenced by a much higher rate of occurrence of spontaneous network-level events known as long-lasting depolarizations (LLDs). The higher probability of LLDs did not appear to reflect changes in inhibitory connections onto MCs but rather enhanced spontaneous excitation of external tufted cells (eTCs) that provide feedforward excitation onto MCs within glomeruli. In addition, in a go/no-go operant discrimination paradigm, we found that Fmr1 KO mice displayed impaired discrimination of odors in difficult tasks that involved odor mixtures but not altered discrimination of monomolecular odors. We suggest that the higher excitability of MCs in Fmr1 KO mice may impair fine odor discrimination by broadening odor tuning curves of MCs and/or altering synchronized oscillations through changes in transient inhibition.

Significance statement: Fragile X syndrome (FXS) in humans is associated with a range of debilitating deficits including aberrant sensory processing. One sensory system that has received comparatively little attention in studies in animal models of FXS is olfaction. Here, we report the first comprehensive physiological analysis of circuit defects in the olfactory bulb in the commonly-used Fmr1 knockout (KO) mouse model of FXS. Our studies indicate that Fmr1 KO alters the local excitation/inhibition balance in the bulb - similar to what Fmr1 KO does in other brain circuits - but through a novel mechanism that involves enhanced feedforward excitatory drive. Furthermore, Fmr1 KO mice display behavioral impairments in fine odor discrimination, an effect that may be explained by enhanced neural excitability.

Publication types

  • Preprint