Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites

J Colloid Interface Sci. 2023 Aug:643:489-501. doi: 10.1016/j.jcis.2023.04.047. Epub 2023 Apr 17.

Abstract

The loading treatment of phosphorus flame retardants can mitigate their migration and plasticization effect. However, designing suitable carriers has remained a great challenge. Herein, two kinds of Co-based isomers, namely cobalt-cobalt layered double hydroxides (CoCo-LDH) and cobalt basic carbonate (CBC), were synthesized by employing ZIF-67 as a self-template, assemblied into two different nanostructures namely multi-yolk@shell CBC@CoCo-LDH (m-CBC@LDH) and solid CBC nanoparticles by facilely tuning the reaction time, which were employed as carriers, respectively. Subsequently, triphenyl phosphate (TPP)-loaded m-CBC@LDH (m-CBC-P@LDH) was prepared using TPP as the guest. The m-CBC@LDH with high specific surface area and hollow structure exhibited up to more than 30% of TPP loading. The peak of heat release rate and total heat release of polyurea composite blended with 5 wt% m-CBC-P@LDH reduced by 41.7% and 20.6% respectively, and the mechanical properties were less damaged. This work complements a feasible approach for preparation of metal-organic frameworks-derived flame retardant carriers.

Keywords: Flame retardancy; Mechanical properties; Metal-organic frameworks; Nano-structures; Polymer-matrix composites.