Potential lifetime effects caused by cellular uptake of nanoplastics: A review

Environ Pollut. 2023 Jul 15:329:121668. doi: 10.1016/j.envpol.2023.121668. Epub 2023 Apr 20.

Abstract

Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.

Keywords: Cellular uptake; Daily-use products; Factors; Fragmentation; Human health risks; Nanoplastics.

Publication types

  • Review

MeSH terms

  • Humans
  • Microplastics* / toxicity
  • Plastics / toxicity
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Microplastics
  • Plastics
  • Water Pollutants, Chemical