Tuning Stiffness with Granular Chain Structures for Versatile Soft Robots

Soft Robot. 2023 Jun;10(3):493-503. doi: 10.1089/soro.2021.0218. Epub 2023 Apr 20.

Abstract

Stiffness variation can greatly enhance soft robots' load capacity and compliance. Jamming methods are widely used where stiffness variation is realized by jamming of particles, layers, or fibers. It is still challenging to make the variable stiffness components lightweight and adaptive. Besides, the existing jamming mechanisms generally encounter deformation-induced softening, restricting their applications in cases where large deformation and high stiffness are both needed. Herein, a multifunctional granular chain assemblage is proposed, where particles are formed into chains with threads. The chain jamming can be classified into two types. Granular chain jamming (GCJ) utilizes typical particles such as spherical particles, which can achieve both high stiffness and great adaptability while keeping jamming components relatively lightweight, while by using cubic particles, a peculiar deformation-induced stiffening mechanism is found, which is termed as stretch-enhanced particle jamming (SPJ). The versatility of GCJ and SPJ mechanisms in soft robots is demonstrated through soft grippers, soft crawlers, or soft bending actuators, where great passive adaptability, high load capacity, joint-like bending, friction enhancement, or postponing buckling can be realized, respectively. This work thus offers a facile and low-cost strategy to fabricate versatile soft robots.

Keywords: granular chain jamming; granular chains; stiffness variation; stretch-enhanced particle jamming and soft robots.

MeSH terms

  • Food
  • Friction
  • Robotics*
  • Software