Highly Tunable MOF Luminophores Featuring Anthracene Directed Assembly and Fluorescence Regulation

Inorg Chem. 2023 May 1;62(17):6751-6758. doi: 10.1021/acs.inorgchem.3c00449. Epub 2023 Apr 21.

Abstract

Metal-organic frameworks (MOFs) have been recognized as a potential platform for the development of tunable luminophores owing to their highly modulable structures and components. Herein, two MOF luminophores based on Cd(II) ions, 1,3,5-tri(4-pyridinyl)benzene (TPB), and 1,4-dicarboxybenzene (H2BDC) were constructed. The directed assembly of the metal ions and organic linkers results in [Cd2(BDC)2(TPB)(H2O)]·x(solvent) (MOF-1) featuring TPB-based blue fluorescence centered at 425 nm. By introducing anthracene as the structure directing agent (SDA) for assembly regulation, [Cd2(BDC)(TPB)2(NO3)2x(solvent) (MOF-2) was obtained, which reveals anthracene feeding-dependent high tunable emission in the 517-650 nm range. Detailed components, photophysical properties, and structural characteristics investigations of MOF-2 indicate the TPB and NO3- interactions as the origin of its redshifted emission compared with that of MOF-1. Furthermore, the fluorescence of MOF-2 was found to be regulatable by the anthracene feeding based on the SDA-determined crystallinity of the crystalline sample. All these results provided a unique example of the structural and fluorescence regulation of MOF luminophores.