Large-Area Metal-Semiconductor Heterojunctions Realized via MXene-Induced Two-Dimensional Surface Polarization

ACS Nano. 2023 May 9;17(9):8324-8332. doi: 10.1021/acsnano.2c12684. Epub 2023 Apr 20.

Abstract

Direct MXene deposition on large-area 2D semiconductor surfaces can provide design versatility for the fabrication of MXene-based electronic devices (MXetronics). However, it is challenging to deposit highly uniform wafer-scale hydrophilic MXene films (e.g., Ti3C2Tx) on hydrophobic 2D semiconductor channel materials (e.g., MoS2). Here, we demonstrate a modified drop-casting (MDC) process for the deposition of MXene on MoS2 without any pretreatment, which typically degrades the quality of either MXene or MoS2. Different from the traditional drop-casting method, which usually forms rough and thick films at the micrometer scale, our MDC method can form an ultrathin Ti3C2Tx film (ca. 10 nm) based on a MXene-introduced MoS2 surface polarization phenomenon. In addition, our MDC process does not require any pretreatment, unlike MXene spray-coating that usually requires a hydrophilic pretreatment of the substrate surface before deposition. This process offers a significant advantage for Ti3C2Tx film deposition on UV-ozone- or O2-plasma-sensitive surfaces. Using the MDC process, we fabricated wafer-scale n-type Ti3C2Tx-MoS2 van der Waals heterojunction transistors, achieving an average effective electron mobility of ∼40 cm2·V-1·s-1, on/off current ratios exceeding 104, and subthreshold swings of under 200 mV·dec-1. The proposed MDC process can considerably enhance the applications of MXenes, especially the design of MXene/semiconductor nanoelectronics.

Keywords: MoS2; Ti3C2Tx MXene; surface polarization; thin film; transistor.