Fruit Rot Caused by Fusarium sulawesiense on Chilli in Guangxi, China

Plant Dis. 2023 Apr 20. doi: 10.1094/PDIS-01-23-0044-PDN. Online ahead of print.

Abstract

Chilli (Capsicum annuum) is considered as one of the most important vegetables and spice crops throughout the world which is widely cultivated in China. In October 2019, fruit rot symptoms were observed on chilli in Guilin, Guangxi, China (N24°18', E109°45'). Irregular dark green spots initially appeared on the middle or bottom of the fruit, then extended to larger grayish brown lesions and started to rot. In the late stage, the whole fruit dried up after water loss. Three disease samples were collected from three towns of different counties in Guilin where the disease incidence of chilli fruits was 15-30%. The margin of diseased fruits was cut into small pieces (3×3 mm), disinfected with 75% ethanol solution for 10 s, 2% NaOCl for 1 min, and rinsed in sterile distilled water three times. Tissue pieces were separately plated on potato dextrose agar (PDA) and incubated at 25°C for seven days. Fifty-four fungal isolates with similar morphology were consistently recovered from diseased tissues of three fruits, with 100% isolation frequency. Three representatives GC1-1, GC2-1 and PLX1-1 were selected for further analysis. The colonies produced abundant whitish to yellowish aerial mycelium on PDA after 7 days incubation at 25°C in the dark. Macroconidia cultured on carnation leaf agar (CLA) for 7 days were long, hyaline, falcate, with dorsal and ventral lines often gradually wider toward apex, curved apical cell and foot-shaped basal cell, mostly 2 to 5 septa, and ranged from 24.16 to 38.88 × 3.36 to 6.55 μm (average 31.39×4.48 μm), from 19.44 to 28.68 × 3.02 to 4.99 μm (average 23.02×3.89 μm), and from 20.96 to 35.05 × 3.30 to 6.06 μm (average 26.24×4.51 μm) for GC1-1, GC2-1, and PLX1-1, respectively. Microconidia were hyaline, fusoid or ovoid, one-septate or nonseptate, and ranged from 4.61 to 10.14 × 2.61 to 4.77 μm (average 8.13×3.58 μm), from 3.55 to 7.85 × 1.95 to 3.04 μm (average 5.79×2.39 μm), and from 6.75 to 18.48 × 3.05 to 9.07 μm (average 14.32×4.31 μm) for GC1-1, GC2-1, and PLX1-1, respectively. Genomic DNA was extracted from 7-day-old aerial mycelia of these isolates. The internal transcribed spacer (ITS), translation elongation factor (TEF1), calmodulin (CAM) and partial RNA polymerase second largest subunit (RPB2) were amplified using primers ITS4/ITS1, EF1/EF2, CL1/CL2A, and 5F2/7cR, respectively (White et al. 1990; O'Donnell et al. 2000, 2010). Sequences were deposited in GenBank (ITS: OQ080044-OQ080046; TEF1: OQ101589-OQ101591; CAM: OQ101586-OQ101588; RPB2: OQ101592-OQ101594). A maximum Likelihood (ML) phylogenetic tree was constructed with RAxML version 8.2.10 based on the concatenated sequences (ITS, CAM, TEF1, RPB2). According to morphology and phylogenetic analysis, the isolates were identified as Fusarium sulawesiense (Maryani et al. 2019). For pathogenicity tests, multiple punctures in a 5-mm-diameter circle were made with a sterilized toothpick on detached young healthy fruits, followed by inoculation with 10 μl of conidial suspension (106 spores/ml in 0.1% sterile Tween 20). Each isolate was inoculated onto eighteen fruits. Controls were inoculated with water containing 0.1% sterile Tween 20 under the same conditions. Symptoms were observed on the inoculated fruits 7 days after incubation at 25°C, whereas non-inoculated controls were asymptomatic. The fungus was re-isolated from inoculated chilli fruits, completing Koch's postulates. To our knowledge, this is the first report of Fusarium sulawesiense causing fruit rot on Chilli in China. These results will provide valuable information for prevention and management of fruit rot on Chilli.

Keywords: Causal Agent; Crop Type; Fungi; Pathogen detection; Subject Areas; Vegetables.