Encapsulation of Astatide by a water cage

Phys Chem Chem Phys. 2023 May 3;25(17):12284-12289. doi: 10.1039/d3cp00720k.

Abstract

A 512 cage of (H2O)20 consisting of 30 hydrogen bonds encapsulates Astatide with little geometrical distortion. The cage is marginally destabilized but the non-covalent interactions are actually strengthened. Host⋯cage interactions in the [At@(H2O)20]- cluster are anti-electrostatic, placing both negatively charged atoms in direct contact as in Atδ-δ-O-Hδ+. An orbital interaction analysis reveals that explicit host⋯cage contacts are "inverted" hydrogen bonds. That is, the same type of donor→acceptor charge transfer as in hydrogen bonding, with no proton bridging the two negative charges.