Perspective on the Effect of Membrane Mimetics on Dynamic Properties of Integral Membrane Proteins

J Phys Chem B. 2023 May 4;127(17):3757-3765. doi: 10.1021/acs.jpcb.2c07324. Epub 2023 Apr 20.

Abstract

Integral membrane proteins are embedded into cell membranes by spanning the width of the lipid bilayer. They play an essential role in important biological functions for the survival of living organisms. Their functions include the transportation of ions and molecules across the cell membrane and initiating signaling pathways. The dynamic behavior of integral membrane proteins is very important for their function. Due to the complex behavior of integral membrane proteins in the cell membrane, studying their structural dynamics using biophysical approaches is challenging. Here, we concisely discuss challenges and recent advances in technical and methodological aspects of biophysical approaches for gleaning dynamic properties of integral membrane proteins to answer pertinent biological questions associated with these proteins.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biomimetics
  • Cell Membrane / chemistry
  • Lipid Bilayers* / chemistry
  • Membrane Proteins* / chemistry
  • Membranes / metabolism

Substances

  • Membrane Proteins
  • Lipid Bilayers