Genotoxic effects of the major alkylation damage N7-methylguanine and methyl formamidopyrimidine

Biochem J. 2023 May 15;480(9):573-585. doi: 10.1042/BCJ20220460.

Abstract

Various alkylating agents are known to preferentially modify guanine in DNA, resulting in the formation of N7-alkylguanine (N7-alkylG) and the imidazole ring opened alkyl-formamidopyrimidine (alkyl-FapyG) lesions. Evaluating the mutagenic effects of N7-alkylG has been challenging due to the instability of the positively charged N7-alkylG. To address this issue, we developed a 2'-fluorine-mediated transition-state destabilization approach, which stabilizes N7-alkylG and prevents spontaneous depurination. We also developed a postsynthetic conversion of 2'-F-N7-alkylG DNA into 2'-F-alkyl-FapyG DNA. Using these methods, we incorporated site-specific N7-methylG and methyl-FapyG into pSP189 plasmid and determined their mutagenic properties in bacterial cells using the supF-based colony screening assay. The mutation frequency of N7-methylG was found to be less than 0.5%. Our crystal structure analysis revealed that N7-methylation did not significantly alter base pairing properties, as evidenced by a correct base pairing between 2'-F-N7-methylG and dCTP in Dpo4 polymerase catalytic site. In contrast, the mutation frequency of methyl-FapyG was 6.3%, highlighting the mutagenic nature of this secondary lesion. Interestingly, all mutations arising from methyl-FapyG in the 5'-GGT(methyl-FapyG)G-3' context were single nucleotide deletions at the 5'-G of the lesion. Overall, our results demonstrate that 2'-fluorination technology is a useful tool for studying the chemically labile N7-alkylG and alkyl-FapyG lesions.

Keywords: N7-alkylguanine; alkyl-formamidopyrimidine; alkylation damage; fluorination; mutagenesis; translesion DNA synthesis.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alkylation
  • DNA Damage*
  • DNA* / chemistry
  • Guanine / chemistry

Substances

  • 7-methylguanine
  • DNA
  • Guanine