Electrochemical, Regioselective, and Stereoselective Synthesis of Allylic Thioethers and Selenoethers under Transition-Metal-Free and Oxidant-Free Conditions

J Org Chem. 2023 May 5;88(9):6096-6107. doi: 10.1021/acs.joc.3c00473. Epub 2023 Apr 19.

Abstract

We disclose a mild, scalable, electricity-promoted cross coupling protocol between allylic iodides and disulfides/diselenides for the formation of C-S/Se bonds in the absence of transition metals, bases, and oxidants. The stereochemically different densely functionalized allylic iodides gave regio- and stereoselective diverse thioethers in good yields. This strategy demonstrates a sustainable promising approach for the synthesis of allylic thioethers in 38-80% yields. This protocol also provides a synthetic platform for the synthesis of allylic selenoethers. A single-electron transfer radical pathway was also validated with radical scavenger experiments and cyclic voltammetry data.