Influence of a random phase plate on the growth of the backward stimulated Brillouin scatter

Phys Rev E. 2023 Mar;107(3-2):035208. doi: 10.1103/PhysRevE.107.035208.

Abstract

We derive the analytical dispersion relation of a high-energy laser beam's backward stimulated Brillouin scattering (BSBS) in a hot plasma, that accounts both for the random phase plate (RPP) induced spatial shaping and its associated phase randomness. Indeed, phase plates are mandatory in large laser facilities where a precise control of the focal spot size is required. While the focal spot size is well controlled, such techniques produce small scale intensity variations that can trigger laser-plasma instabilities such as BSBS. Quantifying the resulting instability variability is shown to be crucial for understanding accurately the backscattering temporal and spatial growth as well as the asymptotic reflectivity. Our model, validated by means of a large number of three-dimensional paraxial simulations and experimental data, offers three quantitative predictions. The first one addresses the temporal exponential growth of the reflectivity by deriving and solving the BSBS RPP dispersion relation. A large statistical variability of the temporal growth rate is shown to be directly related to the phase plate randomness. Then, we predict the portion of the beam's section that is absolutely unstable, thus helping to precisely assess the validity of the vastly used convective analysis. Finally, a simple analytical correction to the plane wave spatial gain is extracted from our theory giving a practical and effective asymptotic reflectivity prediction that includes the impact of phase plates smoothing techniques. Hence, our study sheds light on the long-time studied BSBS, deleterious to many high-energy experimental studies related to the physics of inertial confinement fusion.