A comprehensive study on flocculation of anionic dyes using the bioflocculant produced by Bacillus thuringiensis: Kinetics, affecting factors, and perspectives

Water Environ Res. 2023 May;95(5):e10868. doi: 10.1002/wer.10868.

Abstract

Bioflocculants have received more and more attention as alternatives to chemical flocculants because of their innocuousness, environmental friendliness, and high effectiveness. This study aims to investigate various factors that influence the performance of the novel bioflocculant produced by Bacillus thuringiensis (BF-TWB10) and analyze its adsorption kinetics to optimize its flocculation performance for real applications. The best-fit kinetic model was pseudo-second order with R2 = 0.999. The effects of pretreatment temperature, pH, and the presence of cations on flocculation were assessed. Further investigations of flocculation, including zeta potential analysis and particle size analysis, were also conducted. Thermal pretreatment of BF-TWB10 or the presence of divalent cations could stimulate the decolorization efficiency of the bioflocculant. BF-TWB10 manifested outstanding dye removal performances with over 90% for all tested anionic dyes at pH 2 and 3. Its decolorization efficiency on anionic dyes decreased with the increase of pH values. Zeta potential analysis revealed that the electrostatic repulsion between anionic dyes decreased after the addition of BT-TWB10 and further diminished by adjusting the reaction mixture to pH 2 before flocculation, suggesting the occurrence of adsorption bridging and charge neutralization. These findings proposed that BF-TWB10 might be a promising bioflocculant for the removal of dyes in textile wastewater. PRACTITIONER POINTS: Bioflocculant BF-TWB10 shows outstanding performance in flocculation. Adsorption process follows pseudo-second-order kinetic model. Flocculation process is pH-responsive. High-temperature pretreatment or divalent cations enhance its flocculation performance. The analyses suggest the occurrence of charge neutralization and adsorption bridging.

Keywords: bioflocculation; microbial flocculants; synthetic dyestuffs; wastewater treatment technologies.

MeSH terms

  • Bacillus thuringiensis*
  • Cations, Divalent
  • Coloring Agents
  • Flocculation
  • Hydrogen-Ion Concentration
  • Kinetics

Substances

  • Cations, Divalent
  • Coloring Agents