The effect of temperature and excitation energy on Raman scattering in bulkHfS2

J Phys Condens Matter. 2023 Apr 28;35(30). doi: 10.1088/1361-648X/acce18.

Abstract

Raman scattering (RS) in bulk hafnium disulfide (HfS2) is investigated as a function of temperature (5 K - 350 K) with polarization resolution and excitation of several laser energies. An unexpected temperature dependence of the energies of the main Raman-active (A1gand Eg) modes with the temperature-induced blueshift in the low-temperature limit is observed. The low-temperature quenching of a modeω1(134 cm-1) and the emergence of a new mode at approx. 184 cm-1, labeledZ, is reported. The optical anisotropy of the RS inHfS2is also reported, which is highly susceptible to the excitation energy. The apparent quenching of the A1gmode atT = 5 K and of the Egmode atT= 300 K in the RS spectrum excited with 3.06 eV excitation is also observed. We discuss the results in the context of possible resonant character of light-phonon interactions. Analyzed is also a possible effect of the iodine molecules intercalated in the van der Waals gaps between neighboringHfS2layers, which inevitably result from the growth procedure.

Keywords: Raman scattering; excitation energy dependence; phase transition; polarization resolved Raman scattering; temperature dependence; transition metal dichalcogenides.