KIR-HLA interactions extend human CD8+ T cell lifespan in vivo

J Clin Invest. 2023 Jun 15;133(12):e169496. doi: 10.1172/JCI169496.

Abstract

BACKGROUNDThere is increasing evidence, in transgenic mice and in vitro, that inhibitory killer cell immunoglobulin-like receptors (iKIRs) can modulate T cell responses. Furthermore, we have previously shown that iKIRs are an important determinant of T cell-mediated control of chronic viral infection and that these results are consistent with an increase in the CD8+ T cell lifespan due to iKIR-ligand interactions. Here, we tested this prediction and investigated whether iKIRs affect T cell lifespan in humans in vivo.METHODSWe used stable isotope labeling with deuterated water to quantify memory CD8+ T cell survival in healthy individuals and patients with chronic viral infections.RESULTSWe showed that an individual's iKIR-ligand genotype was a significant determinant of CD8+ T cell lifespan: in individuals with 2 iKIR-ligand gene pairs, memory CD8+ T cells survived, on average, for 125 days; in individuals with 4 iKIR-ligand gene pairs, the memory CD8+ T cell lifespan doubled to 250 days. Additionally, we showed that this survival advantage was independent of iKIR expression by the T cell of interest and, further, that the iKIR-ligand genotype altered the CD8+ and CD4+ T cell immune aging phenotype.CONCLUSIONSTogether, these data reveal an unexpectedly large effect of iKIR genotype on T cell survival.FUNDINGWellcome Trust; Medical Research Council; EU Horizon 2020; EU FP7; Leukemia and Lymphoma Research; National Institute of Health Research (NIHR) Imperial Biomedical Research Centre; Imperial College Research Fellowship; National Institutes of Health; Jefferiss Trust.

Keywords: Adaptive immunity; Genetic variation; Immunology; T cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD8-Positive T-Lymphocytes / metabolism
  • Humans
  • Killer Cells, Natural*
  • Ligands
  • Longevity*
  • Mice
  • Receptors, KIR / genetics
  • Receptors, KIR / metabolism
  • United States

Substances

  • Ligands
  • Receptors, KIR