Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues

Ann Biomed Eng. 2023 Aug;51(8):1759-1768. doi: 10.1007/s10439-023-03181-6. Epub 2023 Apr 18.

Abstract

Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5-80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress-strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress-strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors.

Keywords: Acute ischemic stroke; Composition; Experimental testing; Histology; Material behaviour; Mechanical thrombectomy; Thrombus.

MeSH terms

  • Compressive Strength / physiology
  • Erythrocytes
  • Humans
  • Thrombectomy
  • Thromboembolism*
  • Thrombosis*
  • Weight-Bearing / physiology