Evolutionary Algorithm Directed Synthesis of Mixed Anion Compounds LaF2 X (X=Br, I) and LaFI2

Angew Chem Int Ed Engl. 2023 Jul 24;62(30):e202301416. doi: 10.1002/anie.202301416. Epub 2023 Jun 14.

Abstract

Mixed-anion compounds have attracted growing attentions, but their synthesis is challenging, making a rational search desirable. Here, we explored LaF3 -LaX3 (X=Cl, Br, I) system using ab initio structure searches based on evolutionary algorithms, and predicted LaF2 X and LaFX2 (X=Br, I), which are respectively isostructural with LaHBr2 and YH2 I, consisting of layered La-F blocks with single and double ordered honeycomb lattices, separated by van der Waals gaps. We successfully synthesized these compounds: LaF2 Br and LaFI2 crystallize in the predicted structure, while LaF2 I is similar to the predicted one but with different layer stacking. LaF2 I exhibits fluoride ion conductivity comparable to that of non-doped LaF3 , and has the potential to show better ionic conductivity upon appropriate doping, given the theoretically lower diffusion energy barrier and the presence of soft iodine anions. This study shows the structure prediction using evolutionary algorithms will accelerate the discovery of mixed-anion compounds in future, in particular those with an ordered anion arrangement.

Keywords: Evolutionary Algorithm; Fluoride Ion Conductor; Mixed Anion.