EZH2 as a prognostic-related biomarker in lung adenocarcinoma correlating with cell cycle and immune infiltrates

BMC Bioinformatics. 2023 Apr 17;24(1):149. doi: 10.1186/s12859-023-05271-7.

Abstract

Backgrounds: It has been observed that high levels of enhancer of zeste homolog 2 (EZH2) expression are associated with unsatisfactory prognoses and can be found in a wide range of malignancies. However, the effects of EZH2 on Lung Adenocarcinoma (LUAD) remain elusive. Through the integration of bioinformatic analyses, the present paper sought to ascertain the effects of EZH2 in LUAD.

Methods: The TIMER and UALCAN databases were applied to analyze mRNA and protein expression data for EZH2 in LUAD. The result of immunohistochemistry was obtained from the HPA database, and the survival curve was drawn according to the library provided by the HPA database. The LinkedOmics database was utilized to investigate the co-expressed genes and signal transduction pathways with EZH2. Up- and down-regulated genes from The Linked Omics database were introduced to the CMap database to predict potential drug targets for LUAD using the CMap database. The association between EZH2 and cancer-infiltrating immunocytes was studied through TIMER and TISIDB. In addition, this paper explores the relationship between EZH2 mRNA expression and NSCLC OS using the Kaplan-Meier plotter database to further validate and complement the research. Furthermore, the correlation between EZH2 expression and EGFR genes, KRAS genes, BRAF genes, and smoking from the Cancer Genome Atlas (TCGA) database is analyzed.

Results: In contrast to paracancer specimens, the mRNA and protein levels of EZH2 were higher in LUAD tissues. Significantly, high levels of EZH2 were associated with unsatisfactory prognoses in LUAD patients. Additionally, the coexpressed genes of EZH2 were predominantly associated with numerous cell growth-associated pathways, including the cell cycle, DNA replication, RNA transport, and the p53 signaling pathway, according to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The results of TCGA database revealed that the expression of EZH2 was lower in normal tissues than in lung cancer tissues (p < 0.05). Smoking was associated with elevated EZH2 expression (p < 0.001). EZH2 was highly expressed in lung cancers with positive KRAS expression, and the correlation was significant in lung adenocarcinoma (r = 0.3129, p < 0.001). CMap was applied to determine the top 15 positively correlated drugs/molecules and the top 15 negatively correlated drugs/molecules. MK-1775, MK-5108, fenbendazole, albendazole, BAY-K8644, evodiamine, purvalanol-a, mycophenolic-acid, PHA-793887, and cyclopamine are potential drugs for patients with lung adenocarcinoma and high EZH2 expression.

Conclusions: Highly expressed EZH2 is a predictor of a suboptimal prognosis in LUAD and may serve as a prognostic marker and target gene for LUAD. The underlying cause may be associated with the synergistic effect of KRAS, immune cell infiltration, and metabolic processes.

Keywords: EZH2; LUAD; Prognosis; Tumor microenvironment.

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • Biomarkers
  • Cell Cycle
  • Enhancer of Zeste Homolog 2 Protein / genetics
  • Humans
  • Lung Neoplasms* / genetics
  • Prognosis
  • Proto-Oncogene Proteins p21(ras)

Substances

  • Enhancer of Zeste Homolog 2 Protein
  • Proto-Oncogene Proteins p21(ras)
  • Biomarkers
  • EZH2 protein, human