An Ion-Channel-Restructured Zwitterionic Covalent Organic Framework Solid Electrolyte for All-Solid-State Lithium-Metal Batteries

Adv Mater. 2023 Jul;35(30):e2301308. doi: 10.1002/adma.202301308. Epub 2023 Jun 5.

Abstract

Organic solid electrolytes offer an effective route for safe and high-energy-density all-solid-state Li metal batteries. However, it remains a challenge to devise a new strategy to promote the dissociation of strong ion pairs and the transport of ionic components in organic solid electrolytes. Herein, a zwitterionic covalent organic framework (Zwitt-COF) with well-defined chemical and pore structures is prepared as a solid electrolyte capable of accelerating the dissociation and transport of Li ions. The Zwitt-COF solid electrolyte exhibits a high room-temperature ionic conductivity of 1.65 × 10-4 S cm-1 with a wide electrochemical stability window. Besides, the Zwitt-COF solid electrolyte displays stable Li plating/stripping behavior via effective inhibition of the formation of Li dendrites and dead Li, leading to superior long-term cycle performance with retention of 99% discharge capacity and 98% Coulombic efficiency in an all-solid-state Li-metal battery. Theoretical simulations reveal that the incorporation of zwitterionic groups into COF can facilitate the dissociation of strong ion pairs and reconstruct the AA-stacking configuration by dissociative adsorption of Li+ ions on Zwitt-COF producing linear hexagonal ion channels in the Zwitt-COF solid electrolyte. This strategy based on Zwitt-COF can provide an alternative way to construct various solid-state Li batteries.

Keywords: all-solid-state lithium batteries; covalent organic frameworks; lithium-metal batteries; solid electrolytes; zwitterionic ion conductors.