Carbon footprint of low-energy buildings in the United Kingdom: Effects of mitigating technological pathways and decarbonization strategies

Sci Total Environ. 2023 Jul 15:882:163490. doi: 10.1016/j.scitotenv.2023.163490. Epub 2023 Apr 15.

Abstract

There is a limited comprehensive analysis of the effectiveness of adopted carbon mitigation strategies for buildings over their life cycle, that are concerned with temporal perspectives of emissions. Accordingly, this paper explores a life cycle assessment (LCA) to address the concerns regarding mitigating the carbon footprint of a UK timber-frame low-energy dwelling. In particular, it aims to investigate the potential greenhouse gas (GHG) emission reduction in terms of three different heating and ventilation options, and to analyze the influence of decarbonization of electricity production as well as the technological progress of the waste treatment of timber on the building's environmental performance. Thus, the whole life‑carbon of the building case studies was evaluated for a total of eight investigated prospective scenarios, and they were compared to the LCA results of the baseline scenario, where the existing technology and context remained constant over time. Results show that using a compact heat pump would lead to a significant whole life-cycle emission reduction of the dwelling, by 19 %; while GHG emission savings can be reinforced if the assessed systems are employed simultaneously with grid decarbonization, exhibiting a 25 %-60 % reduction compared to the baseline scenario. Moreover, technological changes in the waste treatments of timber products could substantially reduce the buildings' embodied emissions, representing 3 %-23 %. From these emission-saving measures, the contribution of material efficiency strategies to achieve more embodied carbon savings should be highlighted in future construction practices.

Keywords: Carbon footprint; Decarbonization strategy; Life cycle assessment; Low-energy building; Timber.