Immunotherapy and Immune Infiltration in Patients with Clear Cell Renal Cell Carcinoma: A Comprehensive Analysis

Genet Res (Camb). 2023 Apr 6:2023:3898610. doi: 10.1155/2023/3898610. eCollection 2023.

Abstract

On a global scale, renal cell carcinoma (RCC) is the second most common form of cancer and the 10th leading cause of cancer-related deaths. There are about 70% of cases of RCC that are clear cell renal cell carcinomas (ccRCCs). This study explores possible targets for immune therapy in patients with RCC. In the recent years, immunotherapy has been applied to RCC patients. In order to identify genes that are closely associated with immune cells, a weighted gene coexpression network analysis (WGCNA) was conducted. A close association was found between genes involved in MEred and M0 macrophages, M1 macrophages, and M2 macrophages. A prognostic prediction model is subsequently developed by incorporating the OS and the expression level of key genes from the RCC cohort into a univariate COX regression analysis, a multivariate COX regression analysis, and a combined COX regression analysis. We finally discovered that 6 genes are closely associated with the prognosis of RCC patients, including SLC16A12, SLC2A9, IGF2BP2, EMX2, ANK3, and METTL7A. The survival analysis proved the prognostic prediction value of the model. The 1-year, 3-year, and 5-year AUC of ROC curves are 0.759, 0.723, and 0.733, respectively. For clinical ROC curves, the AUC score for risk score, stage, grade, and T stage is 0.759, 0.824, 0722, and 0.736, respectively. The nomogram was constructed for better prognosis prediction of RCC patients. In addition, GSVA and GO enrichment analysis was performed to explore the potential pathways that are closely associated with genes involved in the prognostic prediction model. Accordingly, our study demonstrates that immune cells play a crucial role in RCC infiltration. The development of a prognostic prediction model is a potential new prognostic biomarker and potential immunotherapy target for tumors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Renal Cell* / genetics
  • Carcinoma, Renal Cell* / therapy
  • Gene Regulatory Networks
  • Glucose Transport Proteins, Facilitative
  • Humans
  • Immunotherapy
  • Kidney Neoplasms* / genetics
  • Kidney Neoplasms* / therapy
  • Macrophages
  • Prognosis
  • RNA-Binding Proteins

Substances

  • SLC2A9 protein, human
  • Glucose Transport Proteins, Facilitative
  • IGF2BP2 protein, human
  • RNA-Binding Proteins