Changes in homocysteine and non-mercaptoalbumin levels after acute exercise: a crossover study

BMC Sports Sci Med Rehabil. 2023 Apr 17;15(1):59. doi: 10.1186/s13102-023-00656-w.

Abstract

Background: Acute exercise is one factor that increases blood homocysteine levels, and elevated homocysteine levels cause oxidative stress. Albumin, which is abundant in blood, is an antioxidant, and the redox state of albumin is used as an index of oxidative stress in blood. This study aimed to assess the effect of acute exercise on plasma homocysteine levels and the blood non-mercaptoalbumin/mercaptoalbumin ratio as an oxidative stress marker.

Methods: This study used a crossover design with exercise and control conditions. Under exercise conditions, a bicycle ergometer was used to perform 40 min of transient constant-load exercise at 65% heart rate reserve. Under control conditions, participants rested for 40 min. Blood was collected before, 30 min after, and 90 min after exercise, and at the same time points under control conditions. Samples were analyzed for the homocysteine concentration and non-mercaptoalbumin/mercaptoalbumin ratio.

Results: The results revealed that a 65% heart rate reserve and 40 min of acute exercise increased plasma homocysteine concentration and non-mercaptoalbumin ratio. In the intra-condition comparison, the plasma Hcy concentration was significantly increased at Post 30 min (+ 0.83 ± 0.70 µmol/L, P = 0.003) compared with that at Pre in the exercise condition. Furthermore, 90 min after exercise, the blood non-mercaptoalbumin ratio was significantly increased (+ 0.35 ± 0.71%, P = 0.030) compared to Pre.

Conclusion: These results indicate that the plasma Hcy concentration first increased, and then the non-mercaptoalbumin/mercaptoalbumin ratio increased as the elevated state was maintained. This study revealed that 65% heart rate reserve, 40 min of acute exercise increased plasma Hcy concentration and non-mercaptoalbumin ratio.

Keywords: Acute exercise; Homocysteine; Non-mercaptoalbumin ratio; Oxidative stress.