Impact of extreme rainfall on non-point source nitrogen loss in coastal basins of Laizhou Bay, China

Sci Total Environ. 2023 Jul 10:881:163427. doi: 10.1016/j.scitotenv.2023.163427. Epub 2023 Apr 12.

Abstract

Extreme rainfalls often lead to large amounts of nitrogen (N) loss from river basins. However, the composition and spatial variation of N loss caused by extreme events and the effects of control measures are not well understood. To shed light into this question, the Soil and Water Assessment Tool (SWAT) was used to evaluate the spatiotemporal characteristics of organic and inorganic nitrogen (ON and IN) losses in the coastal basins of Laizhou Bay during typhoons Rumbia and Lekima. The effects of best management practices on controlling N loss were also explored during such extreme rainfall events. Results showed that extreme rainfall promoted transport of ON more than IN. The mass of ON and IN transported by the two typhoons exceeded 57 % and 39 % of the average annual N flux, respectively, and the loads were positively correlated with streamflow. During the two typhoons, the loss of ON was mainly concentrated in areas with steep slopes (θ > 15°) and natural vegetation (forests, grasslands, and shrublands). The IN loss was higher in areas with a 5-10° slope. Furthermore, subsurface flow was the main IN transport mechanism in areas with steep slope (θ > 5°). Simulations showed that implementation of filter strips in areas with slopes exceeding 10° can reduce N loss, with much greater reductions in ON (>36 %) than IN (>0.3 %). This study provides important insights into N loss during extreme events and the key role filter strips can play in trapping them before they reach downstream waterbodies.

Keywords: Extreme rainfall; LULC; Nitrogen; Non-point source; Slope.