Gene-guided OX40L anchoring to tumor cells for synergetic tumor "self-killing" immunotherapy

Bioact Mater. 2022 Jul 17:25:689-700. doi: 10.1016/j.bioactmat.2022.07.008. eCollection 2023 Jul.

Abstract

The low objective response rates and severe side effects largely limit the clinical outcomes of immune checkpoint blockade (ICB) therapy. Here, a tumor "self-killing" therapy based on gene-guided OX40L anchoring to tumor cell membrane was reported to boost ICB therapy. We developed a highly efficient delivery system HA/PEI-KT (HKT) to co-deliver the OX40L plasmids and unmethylated CG-enriched oligodeoxynucleotide (CpG). On the one hand, CpG induced the expression of OX40 on T cells within tumors. On the other hand, OX40L plasmids achieved the OX40L anchoring on the tumor cell membrane to next promote T cells responses via OX40/OX40L axis. Such synergistic tumor "self-killing" strategy finally turned "cold" tumors to "hot", to sensitize tumors to programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) blockade therapy, and promoted an immune-mediated tumor regression in both B16F10 and 4T1 tumor models, with prevention of tumor recurrence and metastasis. To avoid the side effects, the gene-guided OX40L anchoring and PD-L1 silencing was proposed to replace the existing antibody therapy, which showed negligible toxicity in vivo. Our work provided a new possibility for tumor "self-killing" immunotherapy to treated various solid tumors.

Keywords: Anti-PD therapy; Gene engineering; OX40L anchoring to tumor cell membrane; Tumor immunotherapy; Tumor relapse and metastasis.