Significant roles of surface functional groups and Fe/Co redox reactions on peroxymonosulfate activation by hydrochar-supported cobalt ferrite for simultaneous degradation of monochlorobenzene and p-chloroaniline

J Hazard Mater. 2023 Mar 5:445:130588. doi: 10.1016/j.jhazmat.2022.130588. Epub 2022 Dec 9.

Abstract

CoFe2O4/hydrochar composites (FeCo@HC) were synthesized via a facile one-step hydrothermal method and utilized to activate peroxymonosulfate (PMS) for simultaneous degradation of monochlorobenzene (MCB) and p-chloroaniline (PCA). Additionally, the effects of humic acid, Cl-, HCO3-, H2PO4-, HPO42- and water matrices were investigated and degradation pathways of MCB and PCA were proposed. The removal efficiencies of MCB and PCA were higher in FeCo@HC140-10/PMS system obtained under hydrothermal temperature of 140 °C than FeCo@HC180-10/PMS and FeCo@HC220-10/PMS systems obtained under higher temperatures. Radical species (i.e., SO4•-, •OH) and nonradical pathways (i.e., 1O2, Fe (IV)/Co (IV) and electron transfer through surface FeCo@HC140-10/PMS* complex) co-occurred in the FeCo@HC140-10/PMS system, while radical and nonradical pathways were dominant in degrading MCB and PCA respectively. The surface functional groups (i.e., C-OH and CO) and Fe/Co redox cycles played crucial roles in the PMS activation. MCB degradation was significantly inhibited in the mixed MCB/PCA solution over that in the single MCB solution, whereas PCA degradation was slightly promoted in the mixed MCB/PCA solution. These findings are significant for the provision of a low-cost and environmentally-benign synthesis of bimetal-hydrochar composites and more detailed understanding of the related mechanisms on PMS activation for simultaneous removal of the mixed contaminants in groundwater.

Keywords: Cobalt ferrite; Hydrochar; Mixed contaminants; Peroxymonosulfate; Radical/non-radical pathway.