Size matters either way: Differently-sized microplastics affect amphibian host and symbiotic microbiota discriminately

Environ Pollut. 2023 Jul 1:328:121634. doi: 10.1016/j.envpol.2023.121634. Epub 2023 Apr 11.

Abstract

Concerns about the implications of microplastics (MPs) on aqueous animals have gained widespread attention. It has been postulated that the magnitude of MPs can influence its toxicity. However, little is known about how MPs toxicity changes with particle size. Amphibians are reliable bioindicators of ecosystem health due to their complex life cycles. In this study, we compared the influences of two sizes nonfunctionalized polystyrene microspheres (1 and 10 μm) on the metamorphosis of Asiatic toad (Bufo gargarizans). Acute exposure to MPs at high concentrations led to bioaccumulation in the digestive track and internal organs (i.e., liver and heart) of tadpoles. Long-term exposure to either size, at environmentally-related concentrations (1 and 4550 p/mL), led to growth and development delay in pro-metamorphic tadpoles. Remarkably, developmental plasticity mitigated these deleterious effects prior to the onset of metamorphic climax without compromising survival rate in later stages. MPs with a diameter of 10 μm dramatically altered the gut microbiota (e.g., abundance of Catabacter and Desulfovibrio) of pro-metamorphic tadpoles, whereas MPs with a diameter of 1 μm induced much more intensive transcriptional responses in the host tissues (e.g., upregulation of protein synthesis and mitochondrial energy metabolism, and downregulation of neural functions and cellular responses). Given that the two MPs sizes induced similar toxic outcomes, this suggests that their principal toxicity mechanisms are distinct. Small-sized MPs can travel easily across the intestinal mucosa and cause direct toxicity, while large-sized MPs accumulate in gut and affect the host by changing the homeostasis of digestive track. In conclusion, our findings indicate that MPs can affect the growth and development of amphibian larvae, but their developmental plasticity determines the ultimate detrimental effects. Multiple pathways of toxicity may contribute to the size-dependent toxicity of MPs. We anticipate that these findings will increase our understanding of the ecological effects of MPs.

Keywords: Developmental plasticity; Metamorphosis; Polystyrene; Toxicity pathway; Transcriptomics.

MeSH terms

  • Animals
  • Bufonidae / metabolism
  • Ecosystem
  • Gastrointestinal Microbiome*
  • Larva
  • Microplastics / metabolism
  • Microplastics / toxicity
  • Plastics / pharmacology
  • Polystyrenes / toxicity
  • Water Pollutants, Chemical* / toxicity

Substances

  • Microplastics
  • Plastics
  • Polystyrenes
  • Water Pollutants, Chemical