Fluorescent deactivation behaviors based on ESIPT and TICT of novel double target fluorescent probe and its sensing mechanism for Al3+/Mg2+: A TD-DFT study

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Sep 5:297:122718. doi: 10.1016/j.saa.2023.122718. Epub 2023 Apr 8.

Abstract

Based on density functional theory (DFT) and time-dependent DFT (TD-DFT) methods with integral equation formula polarized continuum model (IEFPCM), the fluorescent behavior and recognizing mechanism of probe N'-((1-hydroxynaphthalen-2-yl)methylene)isoquinoline-3-carbohydrazide (NHMI) for Al3+/Mg2+ ion were investigated in more detail. Excited state intramolecular proton transfer (ESIPT) process in probe NHMI occurs in the stepwise pattern. The proton H5 of enol structure (E1) firstly moves from O4 to N6 to form single proton-transfer (SPT2) structure, and then the proton H2 of SPT2 transfers from N1 to N3 to form the stable double proton-transfer (DPT) structure. Subsequently, the transformation from DPT to its isomer (DPT1) induces the twisted intramolecular charge transfer (TICT) process. Two non-emissive TICT states (TICT1 and TICT2) were obtained, and TICT2 state quenches the fluorescence observed in the experiment. With the addition of aluminum (Al3+) or magnesium (Mg2+) ion, TICT process is prohibited by the coordination interaction between NHMI and Al3+/Mg2+, and the strong fluorescent signal is turned on. For probe NHMI, the twisted C-N single bond of acylhydrazone part leads to the TICT state. This sensing mechanism may inspire researchers to develop new probes from a different direction.

Keywords: ESIPT; Photophysical; Sensing mechanism; TD-DFT; TICT.