A Directional Chitosan Sound Sensor Based on Piezoelectric-Triboelectric Sensing

ACS Macro Lett. 2023 May 16;12(5):577-582. doi: 10.1021/acsmacrolett.3c00139. Epub 2023 Apr 13.

Abstract

Herein, we have constructed a directional sound sensor based on an anisotropic chitosan aerogel. Because of the lamellar porous structure, this chitosan aerogel exhibits a distinct anisotropic behavior, featuring the compressive stress along the direction of the parallel laminate structure, being approximately 2.6 times that in the orthogonal direction. Simultaneously, the chitosan aerogel is used as a directional sound-sensing material, which exhibits excellent acoustic-electric conversion performance with a marked difference in the direction perpendicular to the laminate structure than in the parallel direction. The CSANG has an optimum electrical output of 66 V and 9.2 μA under a sound stimulation of 150 Hz and 120 dB in the orthogonal direction of the laminate structure. Therefore, this directional chitosan sound sensor with excellent biocompatibility and sound sensitivity demonstrates promising application potential in the field of intelligent sensing and artificial cochlea.