Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide

Molecules. 2023 Apr 6;28(7):3265. doi: 10.3390/molecules28073265.

Abstract

5-Amino-1-β-D-ribofuranosylimidazole-4-carboxamide 5'-monophosphate (ZMP) is a central intermediate in de novo purine nucleotide biosynthesis. Its nucleobase moiety, 5-aminoimidazole-4-carboxamide (Z-base), is considered an ambiguous base that can pair with any canonical base owing to the rotatable nature of its 5-carboxamide group. This idea of ambiguous base pairing due to free rotation of the carboxamide has been applied to designing mutagenic antiviral nucleosides, such as ribavirin and T-705. However, the ambiguous base-pairing ability of Z-base has not been elucidated, because the synthesis of Z-base-containing oligomers is problematic. Herein, we propose a practical method for the synthesis of Z-base-containing DNA oligomers based on the ring-opening reaction of an N1-dinitrophenylhypoxanthine (HxaDNP) base. Thermal denaturation studies of the resulting oligomers revealed that the Z-base behaves physiologically as an A-like nucleobase, preferentially forming pairs with T. We tested the behavior of Z-base-containing DNA oligomers in enzyme-catalyzed reactions: in single nucleotide insertion, Klenow fragment DNA polymerase recognized Z-base as an A-like analog and incorporated dTTP as a complementary nucleotide to Z-base in the DNA template; in PCR amplification, Taq DNA polymerase similarly incorporated dTTP as a complementary nucleotide to Z-base. Our findings will contribute to the development of new mutagenic antiviral nucleoside analogs.

Keywords: 5-aminoimidazole-4-carboxamide; base-pairing property; chemically modified oligonucleotide; melting temperature; mutagenic nucleosides; single nucleotide insertion.

MeSH terms

  • Aminoimidazole Carboxamide*
  • Base Pairing
  • DNA*
  • Nucleosides
  • Nucleotides

Substances

  • 4-aminoimidazole
  • Aminoimidazole Carboxamide
  • DNA
  • Nucleosides
  • Nucleotides