Modulating Optoelectronic and Elastic Properties of Anatase TiO2 for Photoelectrochemical Water Splitting

Molecules. 2023 Apr 5;28(7):3252. doi: 10.3390/molecules28073252.

Abstract

Titanium dioxide (TiO2) has been investigated for solar-energy-driven photoelectrical water splitting due to its suitable band gap, abundance, cost savings, environmental friendliness, and chemical stability. However, its poor conductivity, weak light absorption, and large indirect bandgap (3.2 eV) has limited its application in water splitting. In this study, we precisely targeted these limitations using first-principle techniques. TiO2 only absorbs near-ultraviolet radiation; therefore, the substitution (2.1%) of Ag, Fe, and Co in TiO2 significantly altered its physical properties and shifted the bandgap from the ultraviolet to the visible region. Cobalt (Co) substitution in TiO2 resulted in high absorption and photoconductivity and a low bandgap energy suitable for the reduction in water without the need for external energy. The calculated elastic properties of Co-doped TiO2 indicate the ductile nature of the material with a strong average bond strength. Co-doped TiO2 exhibited fewer microcracks with a mechanically stable composition.

Keywords: DFT; NHE; elastic moduli; optoelectronic; transition metals; water splitting.