Chondroitin Sulfate from Oreochromis niloticus Waste Reduces Leukocyte Influx in an Acute Peritonitis Model

Molecules. 2023 Mar 30;28(7):3082. doi: 10.3390/molecules28073082.

Abstract

Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.

Keywords: biological waste; glycosaminoglycan; inflammation; sulfate polysaccharide; tilapia.

MeSH terms

  • Animals
  • Chondroitin Sulfates
  • Cichlids*
  • Ecosystem
  • Peritonitis* / chemically induced
  • Peritonitis* / drug therapy
  • Tilapia*

Substances

  • Chondroitin Sulfates