Exploring Solar Cells Based on Lead- and Iodide-Deficient Halide Perovskite (d-HP) Thin Films

Nanomaterials (Basel). 2023 Mar 31;13(7):1245. doi: 10.3390/nano13071245.

Abstract

Perovskite solar cells have become more and more attractive and competitive. However, their toxicity induced by the presence of lead and their rather low stability hinders their potential and future commercialization. Reducing lead content while improving stability then appears as a major axis of development. In the last years, we have reported a new family of perovskite presenting PbI+ unit vacancies inside the lattice caused by the insertion of big organic cations that do not respect the Goldschmidt tolerance factor: hydroxyethylammonium HO-(CH2)2-NH3+ (HEA+) and thioethylammonium HS-(CH2)2-NH3+ (TEA+). These perovskites, named d-HPs for lead and halide-deficient perovskites, present a 3D perovskite corner-shared Pb1-xI3-x network that can be assimilated to a lead-iodide-deficient MAPbI3 or FAPbI3 network. Here, we propose the chemical engineering of both systems for solar cell optimization. For d-MAPbI3-HEA, the power conversion efficiency (PCE) reached 11.47% while displaying enhanced stability and reduced lead content of 13% compared to MAPbI3. On the other hand, d-FAPbI3-TEA delivered a PCE of 8.33% with astounding perovskite film stability compared to classic α-FAPI. The presence of TEA+ within the lattice impedes α-FAPI degradation into yellow δ-FAPbI3 by direct degradation into inactive Pb(OH)I, thus dramatically slowing the aging of d-FAPbI3-TEA perovskite.

Keywords: hydroxyethylammonium; lead- and iodide-deficient perovskite; perovskite solar cells; stability; thioethylammonium.