The effect of changing the molecular structure of the surfactant on the dissolution of lamellar phases

J Colloid Interface Sci. 2023 Aug:643:9-16. doi: 10.1016/j.jcis.2023.03.205. Epub 2023 Apr 5.

Abstract

Dissolution processes of surfactants, especially when in the lamellar phase, into water are important for product formulation. Understanding this process at a molecular level will help to enhance product design and control surfactant processes. The main goal of this study is to examine the effect of different lengths of surfactants and the hydrophobic to hydrophilic ratio on the dissolution process of surfactants. To achieve this goal dissipative particle dynamic (DPD) simulations were used. Lamellar equilibrium simulations were carried out for different surfactant chain lengths at 80 vol% with water. The surfactant chains were each run in a simulation box of dimensions 20 × 20 × 20 until equilibrium was reached. The lamellar phase formed for all different surfactant chain lengths and, after the initial equilibrium the surfactant systems were then simulated with a water box for dissolution. The dissolution process was tracked by visual analysis, local concentration analysis, micelle size, and a zonal model to calculate the diffusion parameter. Results show that as the surfactant chain length increased by adding more of the hydrophobic beads, the dissolution process slowed down. Increasing the hydrophilic part of the surfactant speeds up the dissolution process, but the effect of adding more of the hydrophobic part is greater than the effect of adding more of the hydrophilic part on the dissolution process.

Keywords: DPD; Diffusion; Micelles size; Surfactant chain length.