A magnetic field controlled memristor towards the design of an implantable detector

J Colloid Interface Sci. 2023 Aug:643:38-46. doi: 10.1016/j.jcis.2023.04.027. Epub 2023 Apr 8.

Abstract

Memristors, which combine the behaviors of memory and resistive switching (RS), have a wide application prospect in information processing and artificial neural networks. The RS memory behaviors of memristors are primarily determined by the functional layer materials, device structure, and working conditions. Herein, a CuMnO2 nanomaterial with the manganese copper ore structure was prepared on a Ti substrate by hydrothermal method, and a memristor with the Ag/CuMnO2/Ti sandwich structure was developed. The RS memory behavior of the as-prepared memristor can be regulated through a low magnetic field (MF), and thus the resistance value of device shows a multi-level resistance states. Compared with other regulation factors, the MF can remotely adjust and control the RS characteristics of memristor, which is a non-invasive and non-destructive regulatory means. The MF regulated memristor can not only be used for multi-level high-density information storage, but also it can protect the health of special populations by identifying the MF intensity of the surrounding environment. When the device is operated in an MF environment, the change of resistance value of the device in both high resistance state (HRS) and low resistance state (LRS) is mainly attributed to the influence of Loren magnetic force on conductive ions.

Keywords: Hydrothermal method; Loren magnetic force; Magnetic field; Memristor; Resistive switching.