A genome-wide optical pooled screen reveals regulators of cellular antiviral responses

Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2210623120. doi: 10.1073/pnas.2210623120. Epub 2023 Apr 12.

Abstract

The infection of mammalian cells by viruses and innate immune responses to infection are spatiotemporally organized processes. Cytosolic RNA sensors trigger nuclear translocation of the transcription factor interferon regulatory factor 3 (IRF3) and consequent induction of host immune responses to RNA viruses. Previous genetic screens for factors involved in viral sensing did not resolve changes in the subcellular localization of host or viral proteins. Here, we increased the throughput of our optical pooled screening technology by over fourfold. This allowed us to carry out a genome-wide CRISPR knockout screen using high-resolution multiparameter imaging of cellular responses to Sendai virus infection coupled with in situ cDNA sequencing by synthesis (SBS) to identify 80,408 single guide RNAs (sgRNAs) in 10,366,390 cells-over an order of magnitude more genomic perturbations than demonstrated previously using an in situ SBS readout. By ranking perturbations using human-designed and deep learning image feature scores, we identified regulators of IRF3 translocation, Sendai virus localization, and peroxisomal biogenesis. Among the hits, we found that ATP13A1, an ER-localized P5A-type ATPase, is essential for viral sensing and is required for targeting of mitochondrial antiviral signaling protein (MAVS) to mitochondrial membranes where MAVS must be localized for effective signaling through retinoic acid-inducible gene I (RIG-I). The ability to carry out genome-wide pooled screens with complex high-resolution image-based phenotyping dramatically expands the scope of functional genomics approaches.

Keywords: CRISPR screening; IRF3; RIG-I; Sendai; high-content imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antiviral Agents
  • Humans
  • Immunity, Innate / genetics
  • Interferon Regulatory Factor-3 / metabolism
  • Mammals / genetics
  • RNA
  • RNA Viruses* / genetics
  • Signal Transduction*

Substances

  • RNA
  • Antiviral Agents
  • Interferon Regulatory Factor-3