The combination of multiple plant growth promotion and hydrolytic enzyme producing rhizobacteria and their effect on Jerusalem artichoke growth improvement

Sci Rep. 2023 Apr 11;13(1):5917. doi: 10.1038/s41598-023-33099-x.

Abstract

Rhizobacteria are well recognized for their beneficial multifunctions as key promoters of plant development, suppressing pathogens, and improving soil health. In this study, experiments focused on characterizing the plant growth promotion (PGP) and extracellular hydrolase production traits of rhizobacteria, and their impact on Jerusalem artichoke growth. A total of 50 isolates proved capable of either direct PGP or hydrolase-producing traits. Two promising strains (Enterobacter cloacae S81 and Pseudomonas azotoformans C2-114) showed potential on phosphate and potassium solubilization, IAA production, and 1-aminocyclopropane-1-carboxylic acid deaminase activity and hydrolase production. A hydrolase-producing strain (Bacillus subtilis S42) was able to generate cellulase, protease, amylase, β-glucosidase, and phosphatase. These three selected strains also gave positive results for indirect PGP traits such as siderophore, ammonia, oxalate oxidase, polyamine, exopolysaccharide, biofilm, motility, and tolerance to salinity and drought stress. Colonization was observed using a scanning electron microscope and rhizobacteria appeared at the root surface. Interestingly, inoculation with consortia strains (S42, S81, and C2-114) significantly increased all plant parameters, including height, biomass, root (length, surface, diameter, and volume), and tuber fresh weight. Therefore, we recommend that potential consortia of PGP and hydrolase-producing rhizobacteria be employed as a biofertilizer to improve soil and boost crop productivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alphaproteobacteria*
  • Helianthus* / microbiology
  • Hydrolases
  • Plant Development
  • Soil

Substances

  • Hydrolases
  • Soil