The relationship between Meckel's cartilage resorption and incisor tooth germ in mice

J Anat. 2023 Sep;243(3):534-544. doi: 10.1111/joa.13875. Epub 2023 Apr 11.

Abstract

Our understanding of the initiation and cellular mechanisms underlying endochondral resorption of Meckel's cartilage (MC) remains limited. Several studies have shown that the resorption site of MC and the mandibular incisor tooth germ are located close to each other. However, whether incisor tooth germ development is involved in MC resorption remains unclear. In this study, we aimed to elucidate the spatio-temporal interaction between the initiation site of MC resorption and the development of incisor tooth germs in an embryonic mouse model. To this effect, we developed a histology-based three-dimensional (3D) reconstruction technique using paraffin-embedded serial sections of various tissues in the jaw. The serial sections were cut in the frontal section and the tissue constituents (e.g., MC, incisor, and mineralized mandible) were studied using conventional and enzyme-based histochemistry. The outline of each component was marked on the frontal sectional images and 3D structures were constructed. To assess the vascular architecture at the site of MC resorption, immunohistochemical staining using anti-laminin, anti-factor VIII, and anti-VEGF antibodies was performed. MC resorption was first observed on the lateral incisor-facing side of the cartilage rods at sites anterior to the mental foramen on E16.0. The 3D analysis suggested that: (a) the posterior region of the clastic cartilage resorption corresponds to the cervical loop of the incisor; (b) the cervical portion of the tooth germ inflates probably due to temporal cellular congestion prior to differentiation into matrix-producing cells; (c) the incisor tooth germ tissue is present in close proximity to MC even in mouse with continuously growing tooth and determines the disappearance of MC as the tooth development.

Keywords: Meckel's cartilage; calcification; embryonic mouse; resorption; three-dimensional reconstruction.

MeSH terms

  • Animals
  • Cartilage*
  • Cell Differentiation
  • Histocytochemistry
  • Incisor*
  • Mandible
  • Mice
  • Tooth Germ