Vascular mimicry induced by m6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma

Cell Death Discov. 2023 Apr 11;9(1):121. doi: 10.1038/s41420-023-01423-z.

Abstract

Metastatic clear cell renal cell carcinoma (ccRCC) is a lethal sub-type of kidney cancer. Vascular mimicry (VM) has been postulated as an alternative route to supply tumors with nutrients, playing key role in tumor development. Whether VM development is linked to pazopanib efficacy, however, remains unclear. Here, our in vitro and in vivo models identified that VM development was profoundly increased in pazopanib resistant ccRCC as compared to the sensitive controls, which was due to the activation of IGFL2-AS1/AR/TWIST1 signaling. IGFL2-AS1, a m6A modified long coding RNA, was demethylated by METTL3/METTL14 complex and stabilized owing to its failing recognition by YTHDF2 upon chronic pazopanib treatment. Further mechanistic dissection illustrated that IGFL2-AS1 physically interacted with the 5'-UTR AR mRNA and neutralized the negative regulation of 5'-uORF (upstream open reading frame) on AR translation. Indeed, IGFL2-AS1 short of AR binding region failed to promote AR expression, VM formation and pazopanib resistance. In vivo xenografted mouse model also elucidated that inhibition of AR activity with enzalutamide or silence of IGFL2-AS1 with siRNAs all led to retarded growth of pazopanib resistant ccRCC tumors. Together, these results suggest that IGFL2-AS1 may represent a key player to mediate pazopanib-induced VM formation of ccRCC cells via regulating AR expression and targeting this newly identified IGFL2-AS1/AR signaling may help us to better suppress ccRCC VM formation and to increase the therapeutic efficacy of pazopanib.