Interactions of Nanoscale Self-Assembled Peptide-Based Assemblies with Glioblastoma Cell Models and Spheroids

ACS Omega. 2023 Mar 22;8(13):12124-12143. doi: 10.1021/acsomega.2c08049. eCollection 2023 Apr 4.

Abstract

Peptide nanoassemblies have garnered remarkable importance in the development of novel nanoscale biomaterials for drug delivery into tumor cells. Taking advantage of receptor mediated recognition of two known peptides, angiopep-2 (TFFYGGSRGKRNNFKTEEY) and A-COOP-K (ACGLSGLC10 VAK) that bind to the over-expressed receptors low density lipoprotein (LRP-1) and fatty acid binding protein (FABP3) respectively, we have developed new peptide conjugates by combining the anti-inflammatory, antitumor compound azelaic acid with angiopep-2, which efficiently self-assembled into nanofibers. Those nanofibers were then functionalized with the A-COOP-K sequence and formed supramolecular hierarchical structures that were found to entrap the chemotherapeutic drug doxorubicin efficaciously. Furthermore, the nanoassemblies were found to release the drug in a dose-dependent manner and showed a stepwise increase over a period of 2 weeks under acidic conditions. Two cell lines (U-87-MG and U-138-MG) were utilized as models for glioblastoma cells grown in the presence of serum and under serum-free conditions to mimic the growth conditions of natural tumors. The drug entrapped assemblies were found to inhibit the cell proliferation of both U-87 and U-138MG glioblastoma cells. Three dimensional spheroids of different sizes were grown to mimic the tumors and evaluate the efficacy of drug release and internalization. Our results indicated that the nanoassemblies were found to have higher internalization of DOX and were well-spread throughout the spheroids grown, particularly under serum-free conditions. The nanoassemblies also displayed blood-brain barrier penetration when tested with a multicellular in vitro model. Such self-assembled nanostructures with targeting ability may provide a suitable platform for the development of new peptide-based biomaterials that can provide more insights about the mechanistic approach for drug delivery for not only 2D cell cultures but also 3D tumoroids that mimic the tumor microenvironments.